A Perlustration of ICI Self Cancellation Schemes for OFDM Systems

Vaishali Bahl

Assistant Professor, Department of Electronics and Communication Engineering, CT Institute of Technology & Research, Jalandhar, India.

Amandeep Singh Sehmby

Assistant Professor, Department of Electronics and Communication Engineering, CT Institute of Engineering, Management & Technology, Jalandhar, India.

Narinder Pal Singh

Assistant Professor, Department of Electronics and Communication Engineering, CT Institute of Engineering, Management & Technology, Jalandhar, India.

Abstract – Orthogonal frequency division multiplexing (OFDM) is a best technique for next generation wireless communication systems. However its susceptibility to the frequency offset caused by frequency difference between local oscillator of transmitter and receiver or due to Doppler shift leads to Inter Carrier Interference. This problem of ICI leads to degradation in performance of the wireless systems as bit error rate increases with increase in value of frequency offset. This paper epitomize self-cancellation techniques to mitigate ICI effect for OFDM based wireless systems.

Index Terms – Additive white Gaussian Noise (AWGN). Bit Error Ratio (BER), Carrier Frequency Offset (CFO), Inter-Carrier Interference (ICI), Orthogonal Frequency Division Multiplexing (OFDM), Self-Cancellation (SC).

1. INTRODUCTION

The expansion in number of mobile users urges for wireless technologies that can deliver data at high speeds in a spectrally decisive manner. However, aiding such high data rates with sufficient robustness to radio channel impairments requires prudent selection of techniques. Orthogonal frequency division multiplexing (OFDM) is a multicarrier multiplexing technique, in which data is transmitted through several parallel frequency sub channels at a lower rate. It has been standardized in many wireless applications such as Digital Video Broadcasting (DVB), Digital Audio Broadcasting (DAB), High Performance Wireless Local Area Network (HIPERLAN), IEEE 802.11 (Wi-Fi), and IEEE 802.16 (WiMAX) and has also been used for wired applications as in the Asynchronous Digital Subscriber Line (ADSL) and power-line communications [1,2]. One of the main reasons to use OFDM is to increase the robustness against frequency selective fading or narrowband interference. As every technique has its flaws, this technique also has drawback of being sensitive towards frequency mismatch. This mismatch in frequency can either arise because of difference in local oscillator frequencies of transmitter and receiver or due to Doppler shift causing carrier frequency offset. The CFO results in loss of orthogonality of the subcarriers which causes ICI. The effect of ICI can be seen in the terms of This paper has been organized in way that Section II describes the basic description and issues of OFDM system followed by the system description in Section III and Mathematical description of ICI Self-Cancellation Schemes are available for mitigation of ICI has been given in Section IV .The conclusion of paper has been given in Section V.

2. ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

OFDM is a peculiar case of multi-carrier modulation. The principle of OFDM is to divide a single high-data rate stream into a number of lower rate streams that are transmitted simultaneously over some narrower sub channels which are orthogonal to each other. Henceforth it is not only a modulation technique but a multiplexing technique too. The merits of this technique that make it a preferred choice over other modulation techniques are its high spectral efficiency, easier implementation of FFT, lower receiver complexity, robustness for high-data rate transmission over multipath fading channel, high flexibility for link adaptation are few advantages to list. However, it has two basic disadvantages: 1) higher peak to average power ratio (PAPR) as compared single carrier signal [3]. 2) Sensitivity to phase noise, timing and frequency offsets that introduces ICI into the system. The carrier frequency offset is caused by the mismatch of frequencies between the oscillators at the transmitter and receiver, or from the Doppler spread due to the relative motion between the transmitter and receiver. The phase noise arises mainly due to imperfections of the local oscillator in the transceiver. The timing offset arises due to the multipath delay spread and because of it not only inter-symbol interference, but ICI also occurs. However, ICI

induced by phase noise and timing offset can completely be compensated or corrected. But the occurrence of frequency offset due to the Doppler spread or frequency shift resulting in ICI is random, henceforth only its impact can be mitigated. Many different ICI mitigation schemes have been extensively explored to combat the Inter-Carrier Interference in OFDM systems, including frequency-domain equalization [4], timedomain windowing [5], and the ICI self-cancellation (SC) scheme[6]-[12], frequency offset estimation and compensation techniques[13] and so on. Among the schemes, the ICI selfcancellation scheme is a simple method for ICI reduction. It is a two-stage technique that uses redundant modulation to suppress ICI with ease for OFDM. This paper investigates several the self-cancellation techniques to mitigate ICI for OFDM systems. The fundamental idea is to modulate the input data symbol onto a group of subcarriers with predefined coefficients such that the generated interference signals within that group cancel each other, consequently called selfcancellation. In this mitigation technique, the bandwidth efficiency becomes half, which is the drawback of this technique but this drawback can be compensated by using large size alphabets or by increasing no. of subcarriers.

3. SYSTEM DESCRIPTION AND ICI ANALYSIS

Figure1 displays a typical discrete-time base-band equivalent OFDM system model. As shown, a stream of input bit stream is first mapped into symbols using BPSK modulation. The symbols are modulated by IFFT on N-parallel subcarriers after the serial-to-parallel (S/P) conversion. With cyclic prefix (CP) addition, the OFDM symbols are serialized using parallel to serial (P/S) conversion and sent to the channel. At the receiver side, the received symbols are retrieved by S/P conversion, CP subtraction, FFT transformation, P/S conversion and are demapped with corresponding scheme to obtain the desired original bit stream [14].

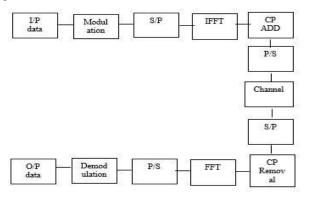


Fig. 1 OFDM Transceiver

In OFDM systems, the transmitted signal in time domain can be expressed as:

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j\frac{2\pi kn}{N}}$$
(1)

Where x (n) denotes the nth sample of the OFDM transmitted signal, X (k) denotes the modulated symbol for the kth subcarrier and k = 0, 1... N -1, N is the total number of

OFDM subcarriers.

The received signal in time domain is given by:

$$y(n) = x(n)e^{j\frac{2\pi n\epsilon}{N}} + w(n) \qquad (2)$$

Where \in is the normalized frequency offset given by $\in = \Delta f.NTs$ in which Δf is the frequency difference which is either due to difference in the local oscillator carrier frequencies of transmitter and receiver of due to Doppler shift and T_s is the subcarrier frequency and w(n) is the Additive White Gaussian Noise introduced in the channel. The effect of this frequency offset on the received symbol stream can be understood by considering the received symbol Y (k) on the kth subcarrier. The received signal at subcarrier index k can be expressed as

$$Y(k) = X(k)S(0) + \sum_{l=0, l \neq k}^{N-1} X(l)S(l-k) + W(k)$$
(3)

Where k = 0, 1... N-1 and X (k) S (0) is the desired signal and $\sum_{l=0}^{N-1} X(l)S(l-k)$ is the ICI component of received OFDM signal.

ICI component S (1-k) can be given as:

$$S(l-k) = \frac{\sin(\pi(l+\epsilon-k))}{N\sin(\pi(l+\epsilon-k)/N)} \exp(j\pi\left(1-\frac{1}{N}\right)(l+\epsilon-k))$$
(4)

To analyse this ICI component, simulation is done with N = 16 for 0.05, 0.15 and 0.30 values of offset. As displayed in fig 2, the marker of blue asterisk denotes ICI component at offset value 0.05, Red Cross denotes it for offset value 0.15 and black circle depicts it for offset value 0.30.

The carrier-to-interference ratio (CIR) is the ratio of the signal power to the power in the interference components. It serves as a good indication of signal quality in the absence of noise. The desired signal is transmitted on subcarrier "0" is considered, then, the CIR of Normal OFDM systems is simplified as

$$CIR = \frac{E[|C(k)|^2]}{E[|ICI(k)|^2]} = \frac{|S(0)|^2}{\sum_{l=1}^{N-1} |S(l)|^2}$$
(5)

It has been analysed that CIR of OFDM systems depends on normalized frequency offset \in for subcarriers N \geq 8.

4. ICI SELF-CANCELLATION SCHEMES

The scheme works in two very simple steps. At the transmitter side, one data symbol is modulated onto a group of adjacent subcarriers with a group of weighting coefficients. The weighting coefficients are designed so that the ICI caused by the channel frequency errors can be minimized. At the receiver side, by linearly combining the received signals on these subcarriers with proposed coefficients, the residual ICI contained in the received signals can then be further reduced.

ISSN: 2395-5317

Various schemes implemented having different weighting coefficients have been described below:-

4.1. Data Conversion Scheme

In the data-conversion self-cancellation scheme [6] for ICI mitigation, data symbol allocation is as

$$X'(k) = X(k)$$
$$X'(k+1) = -X(k)$$

Where k = 0, 2, ..., N-2 in consecutive subcarriers to deal with the ICI. The received signal Y (k) is determined by the difference between the adjacent subcarriers. This selfcancellation scheme relies on the fact that the real and imaginary parts of the ICI coefficients change gradually with respect to the subcarrier index k. Therefore, the difference between consecutive ICI coefficients S(l - k) - S(l - k + 1)is very small. Then the resultant data sequence is used for making symbol decision can be represented

$$Y''(k) = \frac{1}{2} [Y'(k) - Y'(k+1)]$$
(6)

According to the definition of CIR, the CIR of data conversion scheme can be represented as:

$$CIR = \frac{|2S(0) - S(1) - S(-1)|^2}{\sum_{l=2, \, l=even}^{N-2} [|2S(l) - S(l+1) - S(l-1)|^2]}$$
(7)

4.2. Symmetric Data Conversion Scheme

In symmetric data-conversion scheme [7], subcarrier signal is mapped in the form of

$$X'(k) = X(k)$$

X'(N-k-1) = -X(k).

The desired signal is recovered as follows,

$$Y''(K) = \frac{1}{2} \left[Y'(K) - Y'(N - K - 1) \right]$$
(8)

The CIR of the symmetric data-conversion (SDC) scheme is:

$$CIR = \frac{|2S(0) - S(N-1) - S(1-N)|^2}{\sum_{l=2, \, l=even}^{N-2} [|S(l) + S(-l) - S(N-l-1) - S(l-N+1)|^2]}$$
(9)

4.3. Real Constant Weighted Data Conversion Scheme

In real constant weighted data-conversion scheme [8], subcarrier signal is mapped in the form of

$$X'(k) = X(k)$$
$$X'(k+1) = -\mu X$$

Where μ is a real constant in [0,1]. Then the desired data sequence is used for making symbol decision can be represented as:

$$Y''(K) = \frac{1}{1+\mu} \left[Y'(K) - Y'(K+1) \right]$$
(10)

The CIR of the real constant weighted data-conversion (RCWDC) scheme can be represented as: $|(1 + \mu)S(0) - \mu S(1) - S(-1)|^2$

$$CIR = \frac{1}{\sum_{l=2, \, l=even}^{N-2} [|(1+\mu)S(l) - \mu S(l+1) - S(l-1)|^2]}$$
(11)

4.4. Plural Weighted Data Conversion Scheme

This ICI SC scheme is proposed in [9] with the data allocation

$$X'(k) = X(k)$$
$$X'(k+1) = e^{-j\pi/2} X(k)$$

The received signal can be derived as:

 $Y''(k) = \frac{1}{2} [Y'(k) - Y'(k+1)e^{-j\pi/2}]$ (12)

Hence, the CIR of Plural weighted data-conversion (PWDC) Scheme is given by:

$$CIR = \frac{|2S(0) - e^{-j\pi/2} [S(1) - S(-1)]|^2}{\sum_{l=2, \, l=even}^{N-2} [|2S(l) - e^{-\frac{j\pi}{2}} [S(l+1) - S(l-1)]|^2]}$$
(13)

4.5. Data Conjugate Scheme

In the data-conjugate scheme [10], subcarrier signals are mapped in the form of

$$X'(k) = X(k)$$
$$X'(k+1) = -X^*(k)$$

The final recovered signal is as follows,

$$Y''(K) = \frac{1}{2} \left[Y'(K) - {Y'}^*(K+1) \right]$$
(14)

The CIR of the scheme is given by:

$$CIR = \frac{|S(0)+S^*(0)|^2 + |S(1)+S^*(-1)|^2}{\sum_{l=2, \, l=even}^{N-2} [|S(l)+S^*(l)|^2 + |S(l+1)+S^*(l-1)|^2]}$$
(15)

4.6. Weighted Conjugate Transformation Scheme

In the weighted conjugate transformation scheme [11], subcarrier signals are demapped in the form of

$$X'(k) = X(k)$$
$$X'(k+1) = e^{j\pi/2}X^*(k)$$

The final recovered signal is as follows,

$$Y''(k) = \frac{1}{2} [Y'(k) - Y'^*(k+1)e^{-j\pi/2}]$$
(16)

ISSN: 2395-5317

©EverScience Publications

The CIR of the WCT scheme is given by:

$$CIR = \frac{|S(0)+S^{*}(0)|^{2} + |e^{j\pi/2}S(1)+e^{-j\pi/2}S^{*}(-1)|^{2}}{\sum_{l=2, l=even}^{N-2} [|S(l)+S^{*}(l)|^{2} + |e^{j\pi/2}S(l+1)+e^{-j\pi/2}S^{*}(l-1)|^{2}]}$$
(17)

4.7. Rotated Weighted Conjugate Transformation Scheme

In the RWCT scheme [12], subcarrier signals are demapped in the form of

$$X'(k) = X(k)$$

$$X'(k+1) = e^{-j\pi/2}X^*(k)$$

The final recovered signal is as follows,

$$Y''(k) = \frac{1}{2} [Y'(k) - Y'^*(k+1)e^{j\pi/2}] \quad (18)$$

The CIR of the scheme is given by:

$$CIR = \frac{|S(0)+S^*(0)|^2 + |e^{-j\pi/2}S(1)+e^{j\pi/2}S^*(-1)|^2}{\sum_{l=2,\,l=even}^{N-2} [|S(l)+S^*(l)|^2 + |e^{-j\pi/2}S(l+1)+e^{j\pi/2}S^*(l-1)|^2]}$$
(19)

5. CONCLUSION

This paper analyses the ICI self-cancellation schemes to mitigate the effect of ICI caused by normalised frequency offset in OFDM Systems. The problem of carrier frequency offset arises when there occurs a mismatch between the frequencies of transmitter and receiver. The mismatch can either be due to different LO frequencies or due to Doppler shift. This gives rise to Carrier Frequency Offset which destroys orthogonality amongst the subcarriers. This ultimately leads to inter carrier Interference which degrades the system performance .Various ICI self-Cancellation Schemes have been illustrated in this paper depicted in this paper. Although the bandwidth efficiency of the scheme is reduced by half due to the redundant symbols, it can be overcome by increasing the number of subcarriers or using larger signal alphabet size and it is less complex as compared to the other frequency offset estimation and correction schemes.

REFERENCES

- [1] R.W Chang, "Synthesis of band limited orthogonal signal for multichannel data transmission", Bell syst. Tech., Vol. 45, pp.1775-1796, Dec. 1996.
- B.R Salzberg, "Performance of an efficient parallel data transmission [2] system", IEEE trans. Com., Vol. Com-15, pp. 805-813, Dec. 1967.
- Vaishali Bahl, R. Dubey, and Dalvir Kaur," MIMO-OFDM: Foundation [3] for Next-Generation Wireless Systems", International Journal on Recent and Innovation Trends in Computing and Communication (ISSN: 2321-8169(p) 1692 - 1695(0), Volume 2, Issue 6, June 2014.
- W. G. Jeon, etal, "An equalization technique for orthogonal frequency [4] division multiplexing systems in time-variant multipath channels," IEEE Transactions on Communications, vol. 47, no.1, pp.27-32, 2001.
- Heung-Gyoon Ryu, Yingshan Li, and Jin-Soo Park, "An Improved ICI [5] Reduction Method in OFDM Communication System," IEEE Transactions on Broadcasting, vol.51, no.3, pp.395-400, 2005.
- J. Armstrong, "Analysis of new and existing methods of reducing [6] intercarrier interference due to carrier frequency offset in OFDM," IEEE Transactions on Communications, vol. 47, no. 3, pp.365-369, 1999.

- [7] Rimpy Goyal, Rishav Dewan, "ICI Cancellation Using Self ICI Symmetric Conjugate Symbol Repetition for OFDM System", International Journal of Emerging Trends in Signal Processing(IJETSP) ISSN(2319-9784), Volume 1, Issue 6 December 2013
- [8] Yu Fu, Chi Chung Ko, "A new ICI self-cancellation scheme for OFDM systems based on a generalized signal mapper," in Proc. 5th Wireless Personal Multimedia Communications, pp.995-999, Oct.2002.
- [9] Y. Zhao and S. Häggman, "Intercarrier interference self-cancellation scheme for OFDM mobile communication systems," IEEE Transactions on Communications, vol.49, no. 7, pp. 1185-1191, 2001.
- [10] Li Ying-shan, etal, "ICI Compensation in MISO-OFDM System Affected by Frequency Offset and Phase Noise," Journal of Communication and Computer, vol.5, no.12, pp.32-38, 2008.
- [11] Yi-Hao Peng, etal, "Performance Analysis of a New ICI-Self-Cancellation-Scheme in OFDM Systems," IEEE Transactions on Consumer Electronics, vol.53, no. 4, pp.1333-1338, 2007.
- [12] Hen-Geul Yeh, Yuan-Kwei Chang, and Babak Hassibi," A Scheme for Cancelling Intercarrier Interference using Conjugate Transmission in Multicarrier Communication Systems", IEEE Trans. On wireless communication, Vol. 6, No 1, Jan 2007.
- [13] Q. Shi, Y. Fang, M. Wang, "A novel ICI self-cancellation scheme for OFDM systems", in IEEE WiCom, pp.1-4, 2009.
- [14] Abhijeet Bishnu, et al, "A new scheme ICI self-cancellation in OFDM system", IEEE ICCSNT, 2013.
- [15] Eu-Suk Shim, etal, "OFDM Carrier Frequency Offset Estimation Methods with Improved Performance," IEEE Transactions on Broadcasting, vol.53, no. 2, pp.567-573, 2007.
- [16] Nee, Richard van, and Ramjee Prasad. OFDM for wireless multimedia communications Artech House, Inc., 2000.

Authors

Vaishali Bahl is working as Assistant Professor in Department of ECE of CTITR, Jalandhar since 2014. She did her M.Tech with specialization in Wireless Communication from Punjab Technical University Main Campus, Kapurthala. Her research areas include Orthogonal Division Multiplexing based Wireless Systems, Cognitive Radio Technology, Biomedical signal processing. She has contributed research papers in various international journals and conferences.

Five post-graduate student are presently working under her guidance.

Amandeep Singh Sehmby is working as Assistant Professor in Department of ECE of CTIEMT, Jalandhar from 7 years. He did his M.Tech from Punjab Technical University Regional Center. His research areas include Wireless Sensor Networks, Wireless Technology, Embedded Systems, and Signal Processing. Many students have worked in above mentioned areas under his guidance. He has contributed numerous research papers in various

international and national journals and conferences.

Narinder Pal Singh is working as Assistant Professor in department of ECE of CTIEMT, Jalandhar from 9 years. He did his M.Tech from Punjab Technical University Regional Center. His research areas include VLSI Designing, Embedded Systems and Digital Signal Processing. Many students have worked in above mentioned areas under his guidance. He has contributed numerous

research papers in various international and national journals and conferences.

ISSN: 2395-5317